
Curriculum-NAS: CurriculumWeight-Sharing Neural
Architecture Search

Yuwei Zhou
zhou-yw21@mails.tsinghua.edu.cn

Tsinghua University

Xin Wang∗
xin_wang@tsinghua.edu.cn

Tsinghua University

Hong Chen
h-chen20@mails.tsinghua.edu.cn

Tsinghua University

Xuguang Duan
dxg18@mails.tsinghua.edu.cn

Tsinghua University

Chaoyu Guan
zhou-yw21@mails.tsinghua.edu.cn

Tsinghua University

Wenwu Zhu∗
wwzhu@tsinghua.edu.cn

Tsinghua University

ABSTRACT
Neural Architecture Search (NAS) is an effective way to automati-
cally design neural architectures for various multimedia applica-
tions. Weight-sharing, as one of the most popular NAS strategies,
has beenwidely adopted due to its search efficiency. Existingweight-
sharing NAS methods overlook the influence of data distribution
and treat each data sample equally. Contrastively, in this paper,
we empirically discover that different data samples have different
influences on architectures, e.g., some data samples are easy to
fit by certain architectures but hard by others. Hence, there exist
architectures with better performances on early data samples being
more likely to be discovered in the whole NAS searching process,
which leads to a suboptimal searching result. To tackle this problem,
we propose Curriculum-NAS, a curriculum training framework on
weight-sharing NAS, which dynamically changes the training data
weights during the searching process. In particular, Curriculum-
NAS utilizes the multiple subnets included in weight-sharing NAS
to jointly assess data uncertainty, which serves as the difficulty
criterion in a curriculum manner, so that the potentially optimal
architectures can obtain higher probability of being fully trained
and discovered. Extensive experiments on several image and text
datasets demonstrate that our Curriculum-NAS can bring consis-
tent improvement over existing weight-sharing NAS. The code is
available online at https://github.com/zhouyw16/curriculum-nas.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence.

KEYWORDS
neural architecture search, curriculum learning, data uncertainty

ACM Reference Format:
Yuwei Zhou, XinWang, HongChen, XuguangDuan, ChaoyuGuan, andWenwu
Zhu. 2022. Curriculum-NAS: Curriculum Weight-Sharing Neural Architec-
ture Search. In Proceedings of the 30th ACM International Conference on
Multimedia (MM ’22), Oct. 10–14, 2022, Lisboa, Portugal. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3503161.3548271

∗Corresponding authors.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

MM ’22, October 10–14, 2022, Lisboa, Portugal
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9203-7/22/10.
https://doi.org/10.1145/3503161.3548271

1 INTRODUCTION
Neural architecture search (NAS) has gained increasing attention
in the community recently. For its ability to automate the process
of neural architecture designing, NAS has been widely applied to
various multimedia tasks including image classification [33, 43, 62],
object detection [9, 20, 41], semantic segmentation [7, 34, 40, 58],
text representation [52], neural machine translation [48], language
model [36, 42, 61], etc. Existing neural architecture search algo-
rithms can be mainly divided into two branches [15, 18], the multi-
trial methods and the weight-sharing methods, based on whether
there exists a supernet with shared parameters. The multi-trial
methods [3, 27, 35, 39, 43, 54, 60, 61] rely on a large number of trials
on training different individual architectures till convergence to
find the suitable neural architectures, which brings prohibitive com-
putational cost. In contrast, weight-sharing methods [1, 4, 5, 8, 16,
17, 19, 23, 31, 32, 36, 42, 55, 56] force all architectures to share their
trainable weights in order to avoid the computational bottleneck of
repeat training from scratch in the searching procedure.

Recently, the weight-sharing strategy has been widely adopted in
various NAS algorithms including random search based ones [32],
reinforcement learning based ones [42], differentiable ones [36],
evolution based ones [23] and embedding based ones [37], etc. The
sharing of trainable weights and non-repeated training procedure
greatly reduce training computation cost and significantly improve
the searching efficiency. Specifically, the weight-sharing approach
features a supernet which subsumes all possible architectures in
a predefined search space. The trained weights of the supernet
are inherited and shared by each of its subnets. The procedure of
searching architectures is the combination of one-shot training
on the supernet and evaluation on its multiple subnets. Therefore,
the weight-sharing strategy speeds up NAS by hundreds or even
thousands of times and helps to popularize NAS in more areas.

Despite the success of current weight-sharing NAS algorithms,
they fail to consider the influence of data distribution on searching
architectures and merely treat all data samples equally. To explain
this problem, we conduct a pre-experiment on the influence of data
on various architectures. Concretely, we sample 5 common neural
networks [25, 26, 44, 46, 57] for image classifications and 5 archi-
tectures from the DARTS search space [36] and plot the similarity
of their errors on training and test samples of CIFAR-10 [29]. The
details of the 10 networks above are listed in the supplementary.
As is illustrated in Figure 1, the similarity scores between arbitrary
two architectures are all less than 0.4. This phenomenon indicates
architecture is one of the reasons that affect how well a model fits

6792

https://doi.org/10.1145/3503161.3548271
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3503161.3548271

MM ’22, October 10–14, 2022, Lisboa, Portugal Yuwei Zhou et al.

MobileNet VGG ResNet DenseNet DLA

MobileNet

VGG

ResNet

DenseNet

DLA

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Misclassification Similarity on Training Set

0.0

0.2

0.4

0.6

0.8

1.0

MobileNet VGG ResNet DenseNet DLA

MobileNet

VGG

ResNet

DenseNet

DLA

1 0.34 0.33 0.3 0.29

0.34 1 0.38 0.32 0.34

0.33 0.38 1 0.37 0.4

0.3 0.32 0.37 1 0.38

0.29 0.34 0.4 0.38 1

Misclassification Similarity on Test Set

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

subnet1 subnet2 subnet3 subnet4 subnet5

subnet1

subnet2

subnet3

subnet4

subnet5

1 0 0 0 0

0 1 0 0 0.0063

0 0 1 0 0

0 0 0 1 0

0 0.0063 0 0 1

Misclassification Similarity on Training Set

0.0

0.2

0.4

0.6

0.8

1.0

subnet1 subnet2 subnet3 subnet4 subnet5

subnet1

subnet2

subnet3

subnet4

subnet5

1 0.38 0.37 0.38 0.38

0.38 1 0.34 0.38 0.37

0.37 0.34 1 0.34 0.39

0.38 0.38 0.34 1 0.38

0.38 0.37 0.39 0.38 1

Misclassification Similarity on Test Set

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1: Our observation of themisclassification similarity, which is defined as follows: sim =
|𝑊𝑖∩𝑊𝑗 |
|𝑊𝑖∪𝑊𝑗 | , where𝑊 = {𝑦𝑝𝑟𝑒𝑑 ≠ 𝑦𝑡𝑟𝑢𝑒 }

is the misclassification set. The former two subfigures show the misclassification similarity of common neural networks on
training set and test set of CIFAR-10. And the latter two show the randomly sampled subnets from DARTS searching space.

data and the ability of architectures to fit data is distinct. Corre-
spondingly, the influence of data on architectures is different, e.g.,
data samples may be easy for some architectures while difficult for
others. As a result, there are always some architectures that can
perform better on early data samples. In weight-sharing NAS where
all architectures and weights are nested in one supernet, those with
better early performance are more than likely to maintain their
high probability of being sampled [12] because they may improve
themselves at the cost of suppressing other architectures which
are sharing weights with them [13]. Therefore, some potentially
optimal architectures may not have sufficient opportunities to be
fully trained and discovered in the whole searching process, which
leads to sub-optimal results and deteriorating performance.

In this paper, we propose to solve the problem by upweighting
and valuing the data which is more important and worth learning,
so that the subnets with relatively underwhelming performance can
catch up with those having better early performance, and thus the
promising ones can be discovered and searched with much higher
probabilities. This idea is inspired by human education, where
students should devote more effort to important and representative
problems. However, simultaneously determining the proper data
weights and the best architecture poses great challenges to this task.
As is illustrated in Figure 2, existing works are designed to only
search for the architectures, failing to solve the above challenges.

To tackle the challenges, we propose a curriculumweight-sharing
neural architecture search (Curriculum-NAS) in this paper. Specifi-
cally, we design a training schedule by reweighting data samples to
realize a curriculum strategy for weight-sharing NAS. We first ini-
tiate data distribution to be the same as its original. Then, in every
searching iteration, we sample multiple subnets with weights and
architectures inherited from the supernet, and model the outputs of
each data sample through multiple subnets as a Gaussian distribu-
tion with mean given by the ground truth. We denote the standard
deviation of the Gaussian as the uncertainty of the data and softly
select the more uncertain data by assigning higher weights to them.
Next, we conduct the weight-sharing NAS with the adjusted data
distribution and train the supernet till convergence. Finally, we
evaluate the candidate subnets and search for the final architecture.

The key insight of our proposed Curriculum-NAS model is that
uncertain data is important and has great influence on architectures,
and the emphasis on it can help architectures with poor perfor-
mance at the current searching stage to be better trained and those

with great potential may obtain more probability of standing out
in the evaluation stage. To verify the efficacy as well as the uni-
versality of our method, we apply it to 6 popular weight-sharing
NAS algorithms of various types and conduct experiments on 4
datasets for image classification and language model tasks. The
empirical results show that Curriculum-NAS can bring consistent
improvement over existing weight-sharing NAS methods. Further-
more, we conduct a comparative study by tracing the rankings
of searched architectures in several vanilla NAS algorithms and
our Curriculum-NAS model to analyze the beneficial roles of our
method. To summarize, our contributions are listed as follows,
• We propose Curriculum-NAS, a novel curriculum learning based
training framework for weight-sharing NAS algorithms.

• We propose a novel mechanism to evaluate data uncertainty by
utilizing multiple subnets included in weight-sharing NAS.

• We demonstrate that our curriculum learning based training
framework can be applied to various popular weight-sharing
NAS algorithms, which shows its universality.

• Empirical experiments on both image and text datasets show that
our proposed Curriculum-NAS approach is able to bring consis-
tent improvement over existing weight-sharing NAS baselines.

2 PRELIMINARY
For simplicity of description, we first review the general formulation
of NAS. Let 𝐴 be the architecture search space and 𝑎 ∈ 𝐴 is a
candidate architecture. In weight-sharing NAS, 𝐴 is designed as a
supernet architecture represented by a directed acyclic graph (DAG)
and correspondingly 𝑎 is a subnet architecture represented by a
subgraph of the DAG. The trainable weights of every subnet𝑤 (𝑎)
all come from𝑊 (𝐴), i.e. the trained weights of the supernet. To
obtain the optimal architecture 𝑎∗ from 𝐴, a bi-level optimization
problem of architectures and weights has to be solved:

𝑎∗ = argmax
𝑎

ACC𝑣𝑎𝑙 (𝑤∗ (𝑎), 𝑎),

s.t. 𝑤∗ (𝑎) = argmin
𝑤
𝐿𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝑎) .

(1)

Particularly, in some differentiable NAS algorithms, the bi-level
optimization problem can also be formulated as:

𝑎∗ = argmin
𝑎
𝐿𝑣𝑎𝑙 (𝑤∗ (𝑎), 𝑎),

s.t. 𝑤∗ (𝑎) = argmin
𝑤
𝐿𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝑎),

(2)

6793

Curriculum-NAS: Curriculum Weight-Sharing Neural Architecture Search MM ’22, October 10–14, 2022, Lisboa, Portugal

Neural
Architecture
Search

Sample

Input

Supernet Subnet

Existing works: Searching Architecture Our Method: Optimizing Data and Architecture Simultaneously

Reweight

Measure
Supernet Subnets

Original dataReweighted data

Figure 2: Existing works v.s. our method.

where 𝐿𝑡𝑟𝑎𝑖𝑛 (·) and 𝐿𝑣𝑎𝑙 (·) are the loss function on training and
validation set respectively, ACC𝑣𝑎𝑙 (·) is the accuracy on validation
set, and𝑤∗ (𝑎) is the optimal weights of the subnet with the archi-
tecture 𝑎. The maximum ACC𝑣𝑎𝑙 (·) and the minimum 𝐿𝑣𝑎𝑙 (·) both
represent the best performance on the validation set.

In the following sections, we will describe our method under the
general NAS optimization process in Eq. (1).

3 METHOD: CURRICULUM-NAS
In this section, we propose our Curriculum-NAS, which applies cur-
riculum learning to weight-sharing NAS by automatically adjusting
the data distribution during the searching process. First, we for-
mulate our method (Section 3.1). Then, we present our curriculum
approach based on data uncertainty (Section 3.2), data reweight-
ing (Section 3.3) and subnets sampling (Section 3.4). At last, we
summarize the overall process of Curriculum-NAS (Section 3.5).

3.1 Formulation
Given a dataset D = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖 , where each data sample 𝑥𝑖 is
attached with its label 𝑦𝑖 . Let 𝑣 = {𝑣𝑖 }𝑁 ∈ R𝑁 be a vector of
data weights for each sample in dataset. Then our method is to
collaborate the data weights into weight-sharing NAS algorithms:

𝑎∗ = argmax
𝑎

ACC𝑣𝑎𝑙 (𝑤∗ (𝑎, 𝑣), 𝑎), (3a)

s.t. 𝑤∗ (𝑎, 𝑣) = argmin
𝑤
𝐿𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝑎, 𝑣). (3b)

As is shown in Eq. (3), the searching procedure takes data into
consideration and learns a curriculum by reweighting it. The data
weights impact the training procedure by scaling the loss:

𝐿𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝑎, 𝑣) =
𝑁∑︁
𝑖

𝑣𝑖 · 𝑙𝑖 (𝑤, 𝑎), (4)

where 𝑙𝑖 (𝑤, 𝑎) is the loss of 𝑖𝑡ℎ data sample for architecture 𝑎 pa-
rameterized by 𝑤 . A weight value 𝑣𝑖 close to zero means a soft
discarding of the data sample, while a weight value equal to or even
greater than one represents a selection of the data sample. There-
fore, our Curriculum-NAS searches architectures in a curriculum
manner where the selection of data is learned in every training
iteration based on the assessment of multiple subnets sampled from
the supernet, and at the same time, plays an important role in the
optimization of the supernet.

3.2 Data Uncertainty
The key part of our method is how to reweight training data. As
is mentioned in Section 1, each data sample has its influence on
architectures. We measure it by data uncertainty, which could be re-
flected by the deviation among the outputs of multiple architectures.
Concretely, we sample 𝐾 subnets from the supernet and evaluate
each data sample with these subnets, and then reweight the training
data samples. We present the concrete process of calculating data
uncertainty in this subsection.

Let 𝑓𝑘 = 𝑓𝑘 (𝑤𝑘 , 𝑎𝑘) be a subnet with weights𝑤𝑘 and architecture
𝑎𝑘 , where 1 ≤ 𝑘 ≤ 𝐾 . For a data sample 𝑥 , its output from the subnet
𝑓𝑘 is 𝑓𝑘 (𝑥) and its label is 𝑦. We assume the likelihood of a data
sample’s output given by its label is a Gaussian distribution and
define the Bayesian probabilistic model as:

𝑝 (𝑓 (𝑥) |𝑦) = N(𝑦, 𝜎2), (5)

where the label 𝑦 is the mean, and the 𝜎 is the standard deviation
which could be regarded as the uncertainty of a data sample to the
architectures.

For 𝐾 subnets outputs, we assume that they follow independent
Gaussian distributions:

𝑝 (𝑓1 (𝑥), 𝑓2 (𝑥), ..., 𝑓𝐾 (𝑥) |𝑦) =
𝐾∏
𝑘=1

𝑝 (𝑓𝑘 (𝑥) |𝑦). (6)

According to Maximum Likelihood Principle, we optimize the
following objective:

max
𝜎

log𝑝 (𝑓1 (𝑥), 𝑓2 (𝑥), ..., 𝑓𝐾 (𝑥) |𝑦)

= min
𝜎

−
𝐾∑︁
𝑘=1

log𝑝 (𝑓𝑘 (𝑥) |𝑦).
(7)

For regression loss function 𝐿(𝑦, 𝑓 (𝑥)) = (𝑦 − 𝑓 (𝑥))2, it has:

−
𝐾∑︁
𝑘=1

log𝑝 (𝑓𝑘 (𝑥) |𝑦)

∝
𝐾∑︁
𝑘=1

1
2𝜎2

(𝑦 − 𝑓𝑘 (𝑥))2 + log𝜎

=

𝐾∑︁
𝑘=1

1
2𝜎2

𝐿(𝑦, 𝑓𝑘 (𝑥)) + log𝜎.

(8)

6794

MM ’22, October 10–14, 2022, Lisboa, Portugal Yuwei Zhou et al.

⊙

Data Sample 𝑥!

Output from subnet 𝑓"(𝑥!)

Data uncertainty 𝜎!

Curriculum Based on Data Uncertainty

Weight-Sharing NAS with Reweighted Data

Reweighted data 𝑣!𝑥!

Outputs Distribution
𝑝 𝑓 𝑥! 𝑦! = 𝑁(𝑦! , 𝜎!#)

Supernet (𝐴,𝑊 𝐴)

Subnet (𝑎, 𝑤 𝑎)

Sampled subnets for

uncertainty assessment

Reweighted data for

searching process

Figure 3: The framework of Curriculum-NAS. Bottom: The searching process of a weight-sharing NAS with reweighted data.
Upper: The curriculum approach based on data uncertainty. A data sample has multiple outputs from multiple subnets and it is
assumed that the outputs follow a Gaussian distribution with mean given by its label and standard deviation representing its
uncertainty, which decides the weight of the data sample.

For classification loss function 𝐿(𝑦, 𝑓 (𝑥)) = −𝑦 log Softmax𝑓 (𝑥),
the likelihood can be interpreted as a scaled version of Boltzmann
distribution [28]:

−
𝐾∑︁
𝑘=1

log𝑝 (𝑓𝑘 (𝑥) |𝑦, 𝜎)

= −
𝐾∑︁
𝑘=1

log Softmax(1
𝜎2
𝑓𝑘 (𝑥))

=

𝐾∑︁
𝑘=1

− 1
𝜎2

[𝑓𝑘 (𝑥)]𝑦 + log
∑︁
𝑦′

exp(1
𝜎2

[𝑓𝑘 (𝑥)]𝑦′)

=

𝐾∑︁
𝑘=1

1
𝜎2
𝐿(𝑦, 𝑓𝑘 (𝑥)) + log

∑
𝑦′ exp(1

𝜎2 [𝑓𝑘 (𝑥)]𝑦′)

(∑𝑦′ exp([𝑓𝑘 (𝑥)]𝑦′))
1
𝜎2

≈
𝐾∑︁
𝑘=1

1
𝜎2
𝐿(𝑦, 𝑓𝑘 (𝑥)) + log𝜎,

(9)

where [𝑓 (𝑥)]𝑦 represents the 𝑦th element of the output vector and
the approximately equal sign can become a equal one when 𝜎 → 1.

Without loss of generality, we take regression loss Eq. (8) as an
example and directly calculate the value of 𝜎 by minimizing the
following objective:

min
𝐾∑︁
𝑘=1

(
1

2𝜎2
𝐿(𝑦, 𝑓𝑘 (𝑥)) + log𝜎

)
⇐⇒ 𝜕

𝜕𝜎

(
𝐾∑︁
𝑘=1

(
1

2𝜎2
𝐿(𝑦, 𝑓𝑘 (𝑥)) + log𝜎

))
= 0

⇐⇒𝜎 =

√√√
1
𝐾

𝐾∑︁
𝑘=1

𝐿(𝑦, 𝑓𝑘 (𝑥))

(10)

3.3 Data Reweighting
In this part, we map the uncertainty of a data sample to its weight
in order to softly select data and schedule training. Here we borrow
the idea of Hard Example Mining (HEM) [45] that harder data is
more informative. Therefore, we assign higher weights to the data
samples with higher uncertainty, which deserve greater importance
and more emphasis. But unlike HEM, the weights of our method
are dynamic to avoid the overfitting problem faced by HEM.

Besides, the weights of data samples should keep their scales
instead of increasing or decreasing unlimitedly to prevent collaps-
ing. For instance, if all subnets have the correct prediction and the
uncertainty of each data becomes zero, the data weights should
become one instead of zero, which makes our Curriculum NAS de-
generate into the original NAS and perform at least no worse than
that. More specifically, since the original data weights are 𝑣 = {1}𝑁
and the sum of them is 𝑁 , we keep the sum 𝑁 at every training
iteration. Therefore, we define the data weights as in Eq. (11), where
𝜎 = {𝜎𝑖 }𝑁𝑖=1 is the uncertainty vector of all the data samples.

𝑣 = 𝑁
𝜎

∥𝜎 ∥1
. (11)

3.4 Subnets Sampling
In the above subsection, the 𝐾 subnets are mentioned a lot, which
is critical to evaluating the data uncertainty. And in this subsection,
we present the method to sample these subnets from the supernet.

We evaluate the data uncertainty through several subnets instead
of all subnets due to the limitation of computational complexity.
Specifically, we pick up the top-𝐾 subnets in every training iteration
through the following architecture sampling and weights inheriting
stages, because we assume that the more confusing results among
the excellent subnets are more worth learning.

Architecture Sampling. Let 𝜋 be the searching policy, through
which various NAS algorithms pick up their top-1 architecture:

{𝑎} ∼ 𝜋 (𝐴) . (12)

6795

Curriculum-NAS: Curriculum Weight-Sharing Neural Architecture Search MM ’22, October 10–14, 2022, Lisboa, Portugal

Then we define 𝜋𝐾 to pick up the top-𝐾 architectures:

{𝑎1, 𝑎2, ..., 𝑎𝐾 } ∼ 𝜋𝐾 (𝐴) . (13)
For different types of NAS algorithms, we present their corre-

sponding sampling methods. For reinforcement learning algorithms
like ENAS [42], we sample the first 𝐾 architectures constructed by
the controller. For differentiable algorithms like DARTS [36], we
sort all combinations of operations by the product of their prob-
abilities and sample the architectures with top-𝐾 products. For
an evolutionary search algorithm like SPOS [23], we sample the
searched architectures with top-𝐾 accuracy. For a random search
algorithm [32], we simply sample the first 𝐾 searched architectures.

Weights Inheriting. We directly derive the trainable weights of
subnets from the supernet for two reasons. First, the current weights
reflect the current learning state of the supernet. Second, inheriting
instead of retraining largely saves computational costs. Therefore,
we derive the weights connected to the architectures:

𝑤𝑘 =𝑊 (𝑎𝑘). (14)

3.5 CurriculumWeight-Sharing NAS
In the subsection, we present the complete process of Curriculum-
NAS, an automatic approach to optimize architecture search and
data selection for weight-sharing NAS based on data uncertainty.
It is illustrated in figure 3 and elaborated in algorithm 1.

First, we initiate the architecture search space according to the
required task and data and construct the weight-sharing supernet.
We initiate the training data distribution the same as the original. In
every iteration of the training stage, we sample subnets including
network weights and architectures from the supernet and assess
the uncertainty of each data sample to reweight them. Then we
train the supernet based on the adjusted data distribution to update
its trainable weights and architecture searching policy. After that,
we evaluate the searched architectures through validation loss or
accuracy. Finally, we retrain and test the final searched architecture
on the test set to achieve the results.

To sum up, the above algorithm makes full use of the fact that
multiple subnets are included naturally in NAS and evaluates data
uncertainty with these subnets. The reweighted data based on un-
certainty help the promising subnets be more likely to be searched.

Algorithm 1 Curriculum-NAS Algorithm
Require: The number of sampled subnets 𝐾 , the original weight-

sharing NAS algorithm like DARTS, ENAS, etc.
1: Initialize data weights 𝑣 = {1}𝑁 , supernet weights𝑊 , super-

net architecture 𝐴, architecture searching policy 𝜋 .
2: while not convergent do
3: Sample 𝐾 subnets 𝑓𝑘 (𝑤𝑘 , 𝑎𝑘) via Eq. (13) and (14);
4: Assess data uncertainty 𝜎 with 𝐾 subnets via Eq. (10);
5: Update data weights 𝑣 via Eq. (11);
6: Update supernet weights𝑤 ∈𝑊 via Eq. (3b)
7: Update architecture searching policy 𝜋 via the same way

as the original weight-sharing NAS algorithm.
8: end while
9: Derive the final architecture 𝑎∗ ∈ 𝐴 via Eq. (3a).

4 EMPIRICAL RESULTS
In this section, we introduce the experimental setup (Section 4.1),
present the performance of our Curriculum-NAS (Section 4.2), an-
alyze its efficacy through a comparative study (Section 4.4) and
discuss the influence of sampled subnet number 𝐾 (Section 4.5).

4.1 Experimental Setup
To validate the effectiveness of ourmethod, we conduct experiments
on both image classification and language model tasks.

Image Classification. We conduct our image classification ex-
periments on the basis ofNATS-BENCH [15], an extensive version of
NAS-BENCH-201 [18], which is an algorithm-agnostic benchmark
for NAS algorithms evaluation. Its predefined skeleton includes
stacks of cells, each of which is a complete directed acyclic graph
with 4 nodes and 6 edges. Every edge is a choice among 5 operations:
zeroize, skip connection, 1-by-1 convolution, 3-by-3 convolution,
and 3-by-3 average pooling. Therefore, the size of the search space
is 56 = 15625.

The datasets where all of the architectures have been trained and
evaluated in advance are CIFAR-10, CIFAR-100 and ImageNet-16-
120. The three image classification datasets are split into training,
validation and test set according to the proposed configuration in
NATS-BENCH so that the comparisons among architectures are fair
and justified.
• CIFAR-10 [29]: A prevalent image classification dataset with
60×60 color images in 10 classes. In NATS-BENCH configuration,
the original training set is split in half into new training and
validation set.

• CIFAR-100 [29]: The dataset just like CIFAR-10 but with images
in 100 classes. In NATS-BENCH configuration, the original test
set is split in half into new validation and test set.

• ImageNet-16-120 [11, 14]: A down-sampled version of the preva-
lent image classification ImageNet. It consists of 16 color images
in 120 classes. In NATS-BENCH configuration, the original test
set is split in half into new validation and test set.
The performance on the three datasets is evaluated by top-1 ac-

curacy. As the benchmark provides its API for querying the perfor-
mances of architectures, it is convenient to compare NAS algorithms
based on the reported results of the final searched architecture.

Language Model. Apart from the image classification task, we
also conduct language model experiments on the basis of the same
setting as [42] and [36]. We run the official codes published by their
authors, apply our method to the original searching process and
compare the results with/without our curriculum manner.

The dataset on which the experiments are performed is Penn
Treebank(PTB).
• PTB [38]: A popular dataset for language model. We preprocess
PTB in the same way as [42] and [36].
The performance on PTB is evaluated by perplexity. We report

the best test perplexity based on the best architecture in the search-
ing process and the best trainable parameters in the retraining
process.

ComparableMethods. To evaluate the generality of ourmethod
on weight-sharing NAS, we take multiple kinds of state-of-the-art

6796

MM ’22, October 10–14, 2022, Lisboa, Portugal Yuwei Zhou et al.

Table 1: Dataset Statistics

Dataset Task Classes Tokens Training Validation Test
CIFAR-10 Image Classification 10 - 25000 25000 10000
CIFAR-100 Image Classification 100 - 50000 5000 5000
ImageNet-16-120 Image Classification 120 - 151700 3000 3000
PTB Language Model - 10000 42068 3370 3761

NAS algorithms as baselines, including random search algorithms,
differentiable algorithms and reinforcement learning algorithms.

• CL-X: X represents one of the following baseline algorithms and
CL-X is our method applied to the algorithm X.

• RSPS [32]: A random search algorithm with early-stopping and
weight-sharing strategy. It is proposed to serve as a competitive
NAS baseline.

• DARTS-V1 [36]: The first-order DATRS, a differentiable algo-
rithm with mixed operations encoded by continuous parameters.
Its architecture gradient is given by ∇𝑎𝐿𝑣𝑎𝑙 (𝑤, 𝑎).

• DARTS-V2 [36]: The second-order DATRS with its architecture
updated by descending ∇𝑎𝐿𝑣𝑎𝑙 (𝑤 − 𝜉∇𝑤𝐿𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝑎), 𝑎). It costs
more time than DARTS-V1 but generally performs better.

• GDAS [17]: An algorithm with a differentiable sampler over the
supernet to optimize the architecture.

• SETN [16]: A differentiable algorithm with a learnable evaluator
to indicate the probability of each architecture having lower
validation loss.

• ENAS [42]: A classical reinforcement learning based algorithm
with a learnable controller to generate architectures and take the
validation accuracy as the reward.

Hyperparameters Setting. To fairly assess our method, we
take the exact same hyperparameters and configurations as the
benchmark or the baselines did. Besides, we set the number of
sampled subnets 𝐾 ∈ {1, 3, 5, 7, 9, 15} in our method. With the
hyper-parameters above, we report the mean and standard devia-
tion results of 3 runs with different fixed random seeds in image
classification task and report the 1 run result in language model
task due to the limitation of time and computation resources.

4.2 Results of Image Classification
We follow the image classification experiment setting strictly after
the NATS-BENCH, apply our method to 6 weight-sharing NAS algo-
rithms and evaluate the performances on 3 datasets. All algorithms
train their supernets and search architectures on the training and
validation set, and test their final searched architecture on test set.

The main results presented in Table 2 show that our method can
be widely applied to various weight-sharing NAS algorithms and
outperform these baselines on datasets with different scales. The
improvement may result from the adjustment of the data distribu-
tion allowing the promising architectures to have more probability
to be fully trained so that they can stand out in earlier stages.

Besides, it is observed that the degree of improvement depends
on the baselines and datasets. For instance, CL-DARTS-V1 and CL-
DARTS-V2 have their edges over DARTS-V1 and DARTS-V2 on
large datasets (CIFAR-100 and ImageNet-16-120), while CL-GDAS
performs much better than GDAS on the small dataset (CIFAR-10).

Table 2: Image classification Accuracies(%). The results of
the original NAS algorithms come from NATS-BENCH paper.
The bold font represents the better performance. The row of
Optimal presents the highest accuracy on each dataset.

Method CIFAR-10 CIFAR-100 ImageNet-16-120

RSPS 91.05±0.66 68.26±0.96 40.69±0.36
CL-RSPS 93.25±0.41 69.49±1.33 42.58±0.97
DARTS-V1 59.84±7.84 61.26±4.43 37.88±2.91
CL-DARTS-V1 59.84±7.83 67.19±0.65 42.50±1.46
DARTS-V2 65.38±7.84 60.49±4.95 36.79±7.59
CL-DARTS-V2 70.92±0.00 67.46±1.00 38.71±4.05
GDAS 93.23±0.58 68.17±2.50 39.40±0.00
CL-GDAS 93.54±0.10 68.17±0.33 39.40±0.00
SETN 92.72±0.73 69.36±1.72 39.51±0.33
CL-SETN 93.01±0.24 71.03±0.11 39.68±0.16
ENAS 93.76±0.00 70.67±0.62 41.44±0.00
CL-ENAS 93.76±0.00 70.75±0.11 42.67±1.73
Optimal 94.37 73.51 46.20

Table 3: Language Model Perplexities. The results of the orig-
inal NAS algorithms are obtained by running their official
code published in the setting of fixed sequence length. The
bold font represents the better performance.

Method Valid PPL Test PPL

DARTS-V1 62.61 60.08
CL-DARTS-V1 61.31 58.78
DARTS-V2 60.52 58.37
CL-DARTS-V2 59.29 56.94
ENAS 62.66 59.93
CL-ENAS 61.58 58.38

It is most likely due to their different convergence rates, which is
mentioned in NATS-BENCH. Although DARTS-V1, DARTS-V2 and
GDAS all belong to differentiable NAS, the former two converge
too quickly on CIFAR-10 and the latter one converges too slowly on
CIFAR-100 and ImageNet-16-120. Except for these situations, our
method brings consistent improvement and achieves good results.

4.3 Results of Language Model
We basically follow the language model experiment after ENAS
and DARTS respectively. However, the two baselines train their
supernets with variable-length text sequences, which can hardly
be regarded as a definite data sample. Therefore, we have to fix the

6797

Curriculum-NAS: Curriculum Weight-Sharing Neural Architecture Search MM ’22, October 10–14, 2022, Lisboa, Portugal

0 20 40 60 80 100
Searching Epoch

100

101

Lo
g

Ra
nk

in
g

Architecture Rankings on CIFAR-10
70.92%-Acc Arch in CL-DARTS-V2
70.92%-Acc Arch in DARTS-V2
54.30%-Acc Arch in CL-DARTS-V2
54.30%-Acc Arch in DARTS-V2

0 20 40 60 80 100
Searching Epoch

100

101

102

103

104

Lo
g

Ra
nk

in
g

Architecture Rankings on CIFAR-10
93.43%-Acc Arch in CL-GDAS
93.43%-Acc Arch in GDAS
93.28%-Acc Arch in CL-GDAS
93.28%-Acc Arch in GDAS

0 20 40 60 80 100
Searching Epoch

102

103

104

Lo
g

Ra
nk

in
g

Architecture Rankings on CIFAR-10
92.70%-Acc Arch in CL-SETN
92.70%-Acc Arch in SETN
92.23%-Acc Arch in CL-SETN
92.23%-Acc Arch in SETN

Figure 4: The rankings of final searched architectures from left: DARTS-V2, CL-DARTS-V2, middle: GDAS, CL-GDAS, and right:
SETN, CL-SETN. Let the architecture searched by Curriculum-NAS be 𝑎1 and by original NAS 𝑎2. We care about the changing
of their rankings in the two searching procedures respectively, so each subfigure contains 4 lines including red solid: 𝑎1 in
Curriculum-NAS, red dash: 𝑎1 in original NAS, blue dash: 𝑎2 in original NAS and blue solid: 𝑎2 in Curriculum-NAS.

length of each text sequence in order to assess their uncertainty
and assign appropriate weights. We apply our method to 3 weight-
sharing NAS algorithms and evaluate the performances on PTB
dataset. All methods train their supernets and search architectures
on the training and validation set, and test their final searched
architecture on test set after retraining from scratch.

We report the results in Table 3, which indicates our approach
achieves improvements over DARTS-V1, DARTS-V2 and ENAS on
valid and test perplexity.

4.4 Efficacy Analysis
To further analyze the efficacy of our method, we trace the ranking
of the final architectures searched by our method and the baselines.
We plot the changing of rankings on CIFAR-10 in Figure 4.

For instance, let 𝑎1 and 𝑎2 be the final architectures searched
by CL-GDAS and GDAS respectively. Since 𝑎1 has the accuracy
of 93.43% on CIFAR-10 and 𝑎2 only has 93.28%, we call 𝑎1 a more
promising architecture. The results in the middle of Figure 4 show
that (1) 𝑎1 in CL-GDAS (red solid) ranks ahead of 𝑎2 in CL-GDAS
(blue solid) most of the time, illustrating that the more promising
one ranks ahead of the less promising one in our method. (2) 𝑎1
in CL-GDAS (red solid) ranks ahead of 𝑎1 in original GDAS (red
dash) most of the time, illustrating that the more promising one
in our method ranks ahead of itself in the baseline. The results of
CL-DARTS-V2 and CL-SETN lead to the similar conclusion that a
more promising architecture in our method ranks ahead most of the
time especially in the later stage of training because our curriculum
approach plays a gradual role in better training the more promising
architecture. The results verify the efficacy of our method.

We only plot the ranking curves of DATRS, GDAS and ENAS
instead of RSPS and ENAS because we are not able to get an exact
architecture ranking from the latter two algorithms. Besides, the
final searched architecture in SETN does not rank first in the last
epoch because SETN picks up multiple candidate architectures and
chooses the one with the highest validation accuracy.

4.5 Hyperparameter Sensitivity
Another issue worth discussing is the number of sampled subnets𝐾 .
We conduct the experiments with different 𝐾 values and keep other

hyperparameters the same. The results are shown in Figure 5, which
illustrates that our method outperforms the baselines with different
𝐾 in most cases on both CIFAR-10 and CIFAR-100. From the overall
trend, we observe that when 𝐾 is small like 𝐾 = 1 or 𝐾 is large like
𝐾 = 15, the accuracy will be relatively low. The reason is likely
due to the following reasons. When 𝐾 is small, the uncertainty
measured by too few subnets is not sufficient. Especially when
𝐾 = 1, the uncertainty degenerates into the difficulty decided by
one subnet. On the other hand, when 𝐾 is large, the evaluation of
too many subnets weakens the role of data uncertainty, e.g., all data
weights tend to equal to one because of the normalization process
in Equation 11 and our method degenerates into the original weight-
sharing NAS algorithm. And the case can be worse when the really
bad architectures are sampled and they dominate the uncertainty.

5 RELATEDWORK
5.1 Neural Architecture Search
Neural architecture search (NAS) serves as an effective way to de-
sign neural architecture automatically. The first proposed NAS [61]
is based on reinforcement learning, which trains a controller to
generate all layers and their connections. It achieves great perfor-
mance on multimedia datasets, but it costs too much computation
and time. Therefore, the following NAS works strive to reduce the
cost. PNAS [35] searches architectures in a progressive manner.
NASNet [62] does not search architectures but cells, which stack
up to form an architecture. NAO [37] embeds architectures into
low-dimension space. ENAS [42] forces all architectures to share
their trainable architectures to avoid repeat training from scratch,
which is named weight-sharing NAS and is widely used in current
NAS algorithms.

Weight-Sharing NAS. The appearance of weight-sharing NAS
aims to alleviate the unaffordable time and computation cost of NAS.
Besides the baselines mentioned in section 4.1, there are numerous
weight-sharing NAS works. For example, SPOS [23] presents a
single path one-shot approach with uniform sampling and a search
procedure based on evolutionary algorithm. DenseNAS [19], P-
DARTS [8], PC-DARTS [56], SGAS [31], etc. are inspired by DARTS
and focus on its weakness. They respectively manage to speed up
searching, expand thewidth and depth ofmodels, and bridge the gap

6798

MM ’22, October 10–14, 2022, Lisboa, Portugal Yuwei Zhou et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Sampled Subnets

60.0

62.5

65.0

67.5

70.0
Te

st
 A

cc
ur

ac
y

(%
)

DARTS-V1
CL-DARTS-V1

(a) CL-DARTS-V1, CIFAR-100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Sampled Subnets

60.0

62.5

65.0

67.5

70.0

Te
st

 A
cc

ur
ac

y
(%

)

DARTS-V2
CL-DARTS-V2

(b) CL-DARTS-V2, CIFAR-100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Sampled Subnets

70.6

70.8

71.0

71.2

Te
st

 A
cc

ur
ac

y
(%

)

ENAS
CL-ENAS

(c) CL-ENAS, CIFAR-100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Sampled Subnets

90

91

92

93

94

Te
st

 A
cc

ur
ac

y
(%

)

RSPS
CL-RSPS

(d) CL-RSPS, CIFAR-10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Sampled Subnets

93.0

93.2

93.4

93.6

93.8

Te
st

 A
cc

ur
ac

y
(%

)

GDAS
CL-GDAS

(e) CL-GDAS, CIFAR-10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Sampled Subnets

92.0

92.5

93.0

93.5

Te
st

 A
cc

ur
ac

y
(%

)

SETN
CL-SETN

(f) CL-SETN, CIFAR-10

Figure 5: The influence of sampled subnets number 𝐾 on accuracy. Each subfigure contains 2 lines including red: the accuracy
of Curriculum-NAS with different 𝐾 and blue: the accuracy of the original NAS.

between validation and test. To sum up, weight-sharing NAS indeed
improves the efficiency of searching procedure significantly and
maintains the efficacy basically. But it is still confronted with the
problem of decoupled weights and the initially better architecture
taking up the leading position. Therefore, we introduce curriculum
learning into it to adjust data distribution in order to fully train the
supernet and its promising subnets.

5.2 Curriculum Learning
Curriculum learning (CL) [2, 51] is a strategy of training from ease,
imitating the procedure of human learning with curricula. It is
widely used in deep learning to improve model generalization and
accelerate training convergence. The simplest work of CL is named
Baby Step [2, 49], which determines the difficulty and input order
of data in advance. However, the predefined method is not flexible
and satisfying. Therefore, the Self-Paced method [30] is proposed
to select data samples automatically according to the training loss.
Besides, there are Transfer Teacher [24, 53], Reinforcement Learn-
ing Teacher [21, 59], and other automatic CL frameworks based on
the specific data, model and task [6, 47]. The key parts of CL are
a difficulty measurer to judge the difficulty of data samples and a
training scheduler to decide the input sequence of data. Our method
actually belongs to the generalized definition of curriculum learn-
ing because we measure the data difficulty by its uncertainty and
schedule the training process by softly selecting data. Our method
also adopts the idea of Hard Example Mining (HEM) [45], a variant
of CL, which assumes harder data is more informative and trains
from the hardest data, so we assign higher weights to the more
uncertain data.

Apart from this, it should be noted that Curriculum Learning has
been combined with NAS recently. InstaNAS [10] increases the task
difficulty through a reinforcement learning procedure. GTN [50]
replaces each real training data with synthetic one in a curriculum
manner, which however gives up real data distribution and is only
applied on the basis of NAO [37]. CNAS [22] applies curriculum in
search space instead of data. Therefore, our Curriculum-NAS is far
different from the methods above.

5.3 Differences from Other Works
Multi-Task Loss. Its definition [28] is also related to uncertainty:

𝑙𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 (𝑙1, ..., 𝑙𝑛, 𝜎1, ..., 𝜎𝑛) =
𝑛∑︁
𝑖=1

𝑙𝑖

2𝜎2
𝑖

+ log𝜎𝑖 .

However, its uncertainty targets different tasks and is inversely
related to the weights. Besides, the uncertainty is regarded as a
trainable parameter to be optimized. The above two points are the
major difference between our method and the multi-task loss.

Data Augmentation. Another related work to our method is data
augmentation which also changes the data distribution. But it is
not conflicted with our reweighting strategy because our method
is a soft selection of data and augmentation is an extension of data,
both of which can be applied simultaneously. More importantly,
the augmentation is usually predefined or preprocessed but our
data distribution optimization is conducted automatically in every
training iteration.

6 CONCLUSION
In this paper, inspired by curriculum learning where data distribu-
tion and learning scheduler matter, we propose our Curriculum-
NAS, a curriculum training framework on weight-sharing NAS
based on data uncertainty. The method takes advantage of multiple
subnets included in NAS to evaluate data uncertainty. Thanks to
the soft selection of data based on uncertainty, the promising archi-
tectures are more than likely to be fully trained and the NAS can
search for better architectures. A future direction worth studying
is to introduce curriculum learning and optimize data distribution
even in the evaluation or retraining stage to improve current state-
of-the-art works.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-
ment Program of China No. 2020AAA0106300 and National Natural
Science Foundation of China No. 62250008, No. 62102222.

6799

Curriculum-NAS: Curriculum Weight-Sharing Neural Architecture Search MM ’22, October 10–14, 2022, Lisboa, Portugal

REFERENCES
[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc

Le. 2018. Understanding and simplifying one-shot architecture search. In Inter-
national Conference on Machine Learning. PMLR, 550–559.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning. 41–48.

[3] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, 2 (2012).

[4] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2017. Smash:
one-shot model architecture search through hypernetworks. arXiv preprint
arXiv:1708.05344 (2017).

[5] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct neural archi-
tecture search on target task and hardware. arXiv preprint arXiv:1812.00332
(2018).

[6] Thibault Castells, Philippe Weinzaepfel, and Jerome Revaud. 2020. SuperLoss: A
Generic Loss for Robust Curriculum Learning. Advances in Neural Information
Processing Systems 33 (2020).

[7] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret
Zoph, Florian Schroff, Hartwig Adam, and Jon Shlens. 2018. Searching for
efficient multi-scale architectures for dense image prediction. Advances in neural
information processing systems 31 (2018).

[8] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2019. Progressive differentiable
architecture search: Bridging the depth gap between search and evaluation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 1294–
1303.

[9] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, and Jian
Sun. 2019. Detnas: Backbone search for object detection. Advances in Neural
Information Processing Systems 32 (2019).

[10] An-Chieh Cheng, Chieh Hubert Lin, Da-Cheng Juan, Wei Wei, and Min Sun. 2020.
Instanas: Instance-aware neural architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 3577–3584.

[11] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A downsampled
variant of imagenet as an alternative to the cifar datasets. arXiv preprint
arXiv:1707.08819 (2017).

[12] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. 2021. Fairnas: Rethinking evalua-
tion fairness of weight sharing neural architecture search. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 12239–12248.

[13] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. 2020. Fair darts:
Eliminating unfair advantages in differentiable architecture search. In European
conference on computer vision. Springer, 465–480.

[14] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[15] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. 2021. Nats-bench:
Benchmarking nas algorithms for architecture topology and size. IEEE transac-
tions on pattern analysis and machine intelligence (2021).

[16] Xuanyi Dong and Yi Yang. 2019. One-shot neural architecture search via self-
evaluated template network. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 3681–3690.

[17] Xuanyi Dong and Yi Yang. 2019. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1761–1770.

[18] Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: Extending the scope of repro-
ducible neural architecture search. arXiv preprint arXiv:2001.00326 (2020).

[19] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu, and Xinggang Wang.
2020. Densely connected search space for more flexible neural architecture
search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 10628–10637.

[20] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. 2019. Nas-fpn: Learning scalable
feature pyramid architecture for object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7036–7045.

[21] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. 2017. Automated curriculum learning for neural networks. In
international conference on machine learning. PMLR, 1311–1320.

[22] Yong Guo, Yaofo Chen, Yin Zheng, Peilin Zhao, Jian Chen, Junzhou Huang, and
Mingkui Tan. 2020. Breaking the curse of space explosion: Towards efficient nas
with curriculum search. In International Conference on Machine Learning. PMLR,
3822–3831.

[23] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,
and Jian Sun. 2020. Single path one-shot neural architecture search with uniform
sampling. In European Conference on Computer Vision. Springer, 544–560.

[24] Guy Hacohen and Daphna Weinshall. 2019. On the power of curriculum learning
in training deep networks. In International Conference on Machine Learning.
PMLR, 2535–2544.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 770–778.
[26] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[27] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos,
and Eric Xing. 2018. Neural architecture search with bayesian optimisation and
optimal transport. arXiv preprint arXiv:1802.07191 (2018).

[28] Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 7482–7491.

[29] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[30] M Pawan Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-Paced Learning
for Latent Variable Models. In NIPS, Vol. 1. 2.

[31] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet,
and Bernard Ghanem. 2020. Sgas: Sequential greedy architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
1620–1630.

[32] Liam Li and Ameet Talwalkar. 2020. Random search and reproducibility for neural
architecture search. In Uncertainty in artificial intelligence. PMLR, 367–377.

[33] Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou
Huang, and Shenghua Gao. 2019. Towards fast adaptation of neural architectures
with meta learning. In International Conference on Learning Representations.

[34] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L
Yuille, and Li Fei-Fei. 2019. Auto-deeplab: Hierarchical neural architecture search
for semantic image segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 82–92.

[35] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive
neural architecture search. In Proceedings of the European conference on computer
vision (ECCV). 19–34.

[36] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[37] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2018. Neural
architecture optimization. Advances in neural information processing systems 31
(2018).

[38] Mary Ann Marcinkiewicz. 1994. Building a large annotated corpus of English:
The Penn Treebank. Using Large Corpora (1994), 273.

[39] Renato Negrinho and Geoff Gordon. 2017. Deeparchitect: Automatically design-
ing and training deep architectures. arXiv preprint arXiv:1704.08792 (2017).

[40] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid. 2019. Fast neural
architecture search of compact semantic segmentation models via auxiliary
cells. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 9126–9135.

[41] Junran Peng, Ming Sun, ZHAO-XIANG ZHANG, Tieniu Tan, and Junjie Yan.
2019. Efficient neural architecture transformation search in channel-level for
object detection. Advances in Neural Information Processing Systems 32 (2019).

[42] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameters sharing. In International Conference on
Machine Learning. PMLR, 4095–4104.

[43] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, Vol. 33. 4780–4789.

[44] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[45] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. 2016. Training region-
based object detectors with online hard example mining. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 761–769.

[46] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[47] Samarth Sinha, Animesh Garg, and Hugo Larochelle. 2020. Curriculum By
Smoothing. Advances in Neural Information Processing Systems 33 (2020).

[48] David So, Quoc Le, and Chen Liang. 2019. The evolved transformer. In Interna-
tional Conference on Machine Learning. PMLR, 5877–5886.

[49] Valentin I Spitkovsky, Hiyan Alshawi, and Dan Jurafsky. 2010. From baby steps
to leapfrog: How “less is more” in unsupervised dependency parsing. In Human
Language Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics. 751–759.

[50] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey
Clune. 2020. Generative teaching networks: Accelerating neural architecture
search by learning to generate synthetic training data. In International Conference
on Machine Learning. PMLR, 9206–9216.

[51] Xin Wang, Yudong Chen, and Wenwu Zhu. 2021. A Survey on Curriculum
Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

6800

MM ’22, October 10–14, 2022, Lisboa, Portugal Yuwei Zhou et al.

[52] Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai, Ce Zhang, Guinan Su, Xiaoyu
Kou, Yunhai Tong, Mao Yang, and Lidong Zhou. 2020. Textnas: A neural archi-
tecture search space tailored for text representation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 9242–9249.

[53] Daphna Weinshall, Gad Cohen, and Dan Amir. 2018. Curriculum learning by
transfer learning: Theory and experiments with deep networks. In International
Conference on Machine Learning. PMLR, 5238–5246.

[54] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3 (1992), 229–256.

[55] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. 2018. SNAS: stochastic
neural architecture search. arXiv preprint arXiv:1812.09926 (2018).

[56] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2019. PC-DARTS: Partial channel connections for memory-
efficient architecture search. arXiv preprint arXiv:1907.05737 (2019).

[57] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. 2018. Deep layer
aggregation. In Proceedings of the IEEE conference on computer vision and pattern

recognition. 2403–2412.
[58] Yiheng Zhang, Zhaofan Qiu, Jingen Liu, Ting Yao, Dong Liu, and Tao Mei. 2019.

Customizable architecture search for semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11641–11650.

[59] Mingjun Zhao, Haijiang Wu, Di Niu, and Xiaoli Wang. 2020. Reinforced Curricu-
lum Learning on Pre-Trained Neural Machine Translation Models. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34. 9652–9659.

[60] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. 2018. Practical
block-wise neural network architecture generation. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2423–2432.

[61] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

[62] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

6801

	Abstract
	1 Introduction
	2 Preliminary
	3 Method: Curriculum-NAS
	3.1 Formulation
	3.2 Data Uncertainty
	3.3 Data Reweighting
	3.4 Subnets Sampling
	3.5 Curriculum Weight-Sharing NAS

	4 Empirical Results
	4.1 Experimental Setup
	4.2 Results of Image Classification
	4.3 Results of Language Model
	4.4 Efficacy Analysis
	4.5 Hyperparameter Sensitivity

	5 Related Work
	5.1 Neural Architecture Search
	5.2 Curriculum Learning
	5.3 Differences from Other Works

	6 Conclusion
	Acknowledgments
	References

